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Introduction

An important step to allow for the accurate quantitative assessment of 18F-Sodium fluoride (NaF) PET/CT 
images is to reduce the number of false positive metastases arising from benign diseases. NaF PET/CT is one of 
the most sensitive imaging modalities for the detection of bone metastases (Even-Sapir et al 2006). NaF PET has 
higher sensitivity and specificity for bone lesion detection than current clinical standard of 99mTc-methylene 
diphosphonate (MDP) planar bone scans. NaF PET detects 30% more lesions with 5% fewer false positives than 
MDP (Even-Sapir et al 2006). However, the specificity of NaF PET is still only 70%, due to the non-tumor specific 
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Abstract
Purpose. 18F-NaF PET/CT imaging of bone metastases is confounded by tracer uptake in benign 
diseases, such as osteoarthritis. The goal of this work was to develop an automated bone lesion 
classification algorithm to classify lesions in NaF PET/CT images. Methods. A nuclear medicine 
physician manually identified and classified 1751 bone lesions in NaF PET/CT images from 37 
subjects with metastatic castrate-resistant prostate cancer, 14 of which (598 lesions) were analyzed 
by three additional physicians. Lesions were classified on a five-point scale from definite benign 
to definite metastatic lesions. Classification agreement between physicians was assessed using 
Fleiss’ κ. To perform fully automated lesion classification, three different lesion detection methods 
based on thresholding were assessed: SUV  >  10 g ml−1, SUV  >  15 g ml−1, and a statistically 
optimized regional thresholding (SORT) algorithm. For each ROI in the image, 172 different 
imaging features were extracted, including PET, CT, and spatial probability features. These imaging 
features were used as inputs into different machine learning algorithms. The impact of different 
deterministic factors affecting classification performance was assessed. Results. The factors that 
most impacted classification performance were the machine learning algorithm and the lesion 
identification method. Random forests (RF) had the highest classification performance. For lesion 
segmentation, using SORT (AUC  =  0.95 [95%CI  =  0.94–0.95], sensitivity  =  88% [86%–90%], and 
specificity  =  0.89 [0.87–0.90]) resulted in superior classification performance (p  <  0.001) compared 
to SUV  >  10 g ml−1 (AUC  =  0.87) and SUV  >  15 g ml−1 (AUC  =  0.86). While there was only 
moderate agreement between physicians in lesion classification (κ  =  0.53 [95% CI  =  0.52–0.53]), 
classification performance was high using any of the four physicians as ground truth (AUC range: 
0.91–0.93). Conclusion. We have developed the first whole-body automatic disease classification tool 
for NaF PET using RF, and demonstrated its ability to replicate different physicians’ classification 
tendencies. This enables fully-automated analysis of whole-body NaF PET/CT images.
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nature of the tracer (Li et al 2012). The fluoride accumulation in the skeleton is proportional to blood flow and 
the rate of bone turnover, and cases of osteoarthritis are associated with increased bone turnover (Burr 1998).

NaF PET SUV metrics have been shown to correlate to clinical outcome, either for progression free survival 
(Harmon et al 2017) or overall survival (Lindgren Belal et al 2017). Furthermore, Harmon et al showed that the 
heterogeneity of responses of individual lesions is highly predictive of progression free survival (Harmon et al 
2016). This suggests that assessment of NaF PET/CT on a per-lesion level may be useful for evaluating treatment 
efficacy. Misinterpreted false positive lesions may lead to suboptimal treatment decisions. Yet, due to the number 
of lesions that would need to be analyzed, this type of analysis requires automation, especially in the differentia-
tion of malignant and benign bone disease.

Studies have shown that when using standardized uptake value (SUV) alone it is difficult to determine 
whether PET uptake is due to metastatic or benign disease (Cook and Fogelman 2000, Muzahir et al 2015, Sabbah 
et al 2015). When physicians use CT to classify these regions of ambiguous uptake the specificity of NaF PET/CT 
can significantly increase (Even-Sapir et al 2006). However, due to the large number of lesions in patients with 
bone metastases (Wang and Shen 2012), it becomes impractical to perform lesion classification manually. Previ-
ous studies on automatic detection of osteoarthritis in CT and NaF PET/CT images were limited to only spinal 
disease in the form of osteophytes, even though osteoarthritis can commonly occur outside of the spine (Punzi 
et al 2004, Rosen et al 2006, Munoz et al 2013, Yao et al 2014, Wang et al 2016).

This work aims to develop a method for classification of bone disease on NaF PET/CT scans of metastatic 
castrate resistant prostate cancer (mCRPC) patients. We compare nine machine learning techniques and assess 
their performance under different circumstances. We also develop a novel set of imaging features to include in 
our models that describe spatial probabilities of disease patterns.

Methods and materials

Patients
This study included 37 mCRPC patients with evaluable disease who received PET/CT scans before the start of 
treatment. All patients received whole body PET/CT scans 60 min post injection of 160.2  ±  9.6 MBq of NaF. 
Scans at two of the sites were acquired on the Discovery VCT (GE Healthcare, Waukesha, WI) PET/CT scanner, 
and scans at the third site were acquired on the Gemini (Philips Healthcare, Amsterdam, Netherlands) PET/CT 
scanner. The acquisition time for a whole-body scan was 3 min per bed position, imaging from the top of the skull 
to the base of the feet. PET images were attenuation and scatter corrected. Harmonization of image reconstruction 
parameters was performed to allow quantitative comparisons across these sites as described previously (Jallow 
and Jeraj 2014, Lin et  al 2016). Images were quantitatively harmonized using a uniform phantom and the 
National Electrical Manufacturers Association International Electrotechnical Commission body phantom to 
measure recovery coefficient (RC) and signal-to-noise ratio (SNR). Reconstruction parameters, such as number 
of iterations, number of subsets, and post-reconstruction filter, were altered to minimized differences in RC and 
SNR between phantom images obtained at the different sites.

Reference labeling
A nuclear medicine physician (Physician 1) manually identified and classified each lesion within each patient. 
Lesions were classified on a five-point scale, including definitely benign (1), likely benign (2), equivocal (3), likely 
malignant (4), and definitely malignant (5). Benign lesions included spinal osteophytes, disease between joints, 
inflammation, and dental disease. A subset of 14 patients was analyzed by three additional nuclear medicine 
physicians (Physician 2–4) working together, but independently from the other nuclear medicine physician. In 
this subset of patients, one physician identified all of the lesions and then the other three physicians individually 
classified the lesions, which was followed by the determining of a consensus score. These patients were used to 
assess agreement between physicians and assess the impact of physician input into machine learning algorithms.

Lesion detection and ROI generation
In order to create a tool that is fully automated, automated detection of NaF PET lesions was performed using 
different SUV thresholds. Multiple studies assessing use of NaF for metastatic bone cancer imaging use a fixed 
threshold of SUV  >  10 g ml−L for detecting disease (Kurdziel et al 2012, Rohren et al 2015). However, SUV  >   
10 g ml−1 thresholds often includes uptake in healthy bone, and thus a fixed threshold of SUV  >  15 g ml−1 
has been used as an alternative (Lin et al 2016, Harmon et al 2017). However, as these methods have either 
poor sensitivity or specificity for lesion detection, we included optimized bone-specific thresholds based on 
statistically optimized regional thresholding (SORT) (Perk et al 2018), which uses a different threshold in each 
skeletal region defined from skeletal masks extracted from each patient’s CT using atlas-based segmentation 
(Yip et al 2014). In this method receiver operating characteristic (ROC) analysis was performed to determine 
statistically optimal thresholds for disease detection in each of these regions. For all detection methods, ROIs 
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with non-specific NaF uptake that did not overlap the skeletal masks, such as the bladder and kidneys, were 
removed. Automated methods could result in ROIs that overlapped multiple physician identified lesions. If 
this overlap involved lesions were of multiple classes, manual splitting was performed. Each ROI was assigned 
a classification number based on whether it was detected by the physician and the classification of the physician 
described in table 1. A background ROI was defined as an ROI detected by a lesion detection method that was not 

corroborated by the physician and was labeled as class 0.

Feature extraction
For each individual ROI, 172 imaging-based features were extracted, shown in table 2. This includes 17 histogram/
lesion level features extracted on PET or CT images, 41 texture features computed on PET alone (Galavis et al 
2010), 41 texture features computed on CT alone, a categorical variable indicating ROI location, and 72 spatial 
distribution features. Global-level features were computed using the whole ROI and include SUVmax, volume, and 
SUVtotal. The texture features we extracted include eight histogram-based first-order features, 23 co-occurrence 
matrix-based features, 11 features based on gray level run length matrices, five neighboring gray level features, 
and three neighborhood gray tone difference matrix features. To calculate these features, a 5  ×  5  ×  5 voxel 
sub volume was extracted around each voxel, and the features were computed on each directional plane (axial, 
sagittal, and coronal), and then averaged over the three planes to get the feature value for that voxel. The texture 
feature values for each ROI were calculated as the average feature values of all the voxels within the ROI (Galavis 
et al 2010). The skeletal regions were converted into a categorical variable describing the general location of the 
lesion (described in table 2). ROIs overlapping multiple regions were assigned to the bone location containing 

the largest volume of the ROI.
For spatial distribution features, we created population disease distribution models as a way to add a priori 

information about the likelihood of disease in the specific location of the ROI (Perk et al 2015). The population 
disease distribution models were created by using a combination of articulated registration and optical-flow 
deformable registration to register patient’s images and ROIs to a common template (Horn and Schunck 1981, 
Yip et al 2014). The physician labels for each ROI were used to convert the combined template images into popu-
lation disease distributions for each of the labels listed in table 1: definite metastases, likely metastases, equivocal 
lesions, likely benign lesions, definite benign lesions, and background ROIs. Two types of distributions were 
created: probability distribution of disease occurrence (each voxel was normalized by the number of patients) 
and probability distributions of disease classification (each voxel was normalized by the number of lesions that 
occurred at that location). Additional distributions were created combining definite benign with likely benign, 
background ROIs with benign lesions, and definite metastases with likely metastases. When using the spatial dis-
tribution features in our models, we adopted a leave-one-out approach where disease distribution models were 
created using all other patients. For each lesion, four features from each model were extracted: maximum, aver-
age, minimum, and standard deviation of probability distributions within the lesion.

ROI classification
The six classes of ROIs were dichotomized into two groups based on physician labels to perform binary 
classification: 0–2 versus 4–5, 0–3 versus 4–5, 1–2 versus 4–5, 1–3 versus 4–5, 0–1 versus 5, and 1 versus 5. 10-fold 
cross-validation was used to split lesions into ten distinct training and testing datasets with 90% of the lesions 
and 10% of the lesions, respectively. Using the testing set in each fold, features with redundant information were 
removed using correlation analysis across the features. To select features for the model, ROC area under the curve 
(AUC) for predicting lesion binary classification was used as a surrogate for information gain. The feature with the 
highest AUC was selected to be included in the model, and if any features were highly correlated with that feature 
(R  >  0.8), they were removed. This was done until all features were selected or removed. Then feature values 
were used as input into nine different machine learning algorithms: random forests (RF), Adaboost decision 
trees (DT), generalized linear models (GLM), neural network, k-nearest neighbors (KNN), linear discriminant 
analysis (LDA), DT, support vector machines (SVM), and Naive Bayes. Default algorithm hyperparameters 
(shown in table 3), when available, were used when comparing model performances. Algorithms were trained 

Table 1.  Class numbers assigned to each ROI.

ROI Classification Number

Background ROI 0

Definite Benign 1

Likely Benign 2

Equivocal 3

Likely Malignant 4

Definite Malignant 5

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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and assessed on a single physician’s classification of lesions. In the case of neural networks, an additional 20% of 

the training data was held out to use as a validation set.

Model optimization
Comparisons of classification performance were made to assess the impact of various deterministic factors 
on the optimal algorithm’s performance. We assessed choice of machine learning algorithm, lesion detection 
method, imaging resolution for extraction of texture, certainty levels of the ground truth by assessing which 
binary classification task was assessed, different physicians used for ground truth, inclusion of different feature 
sets, and algorithm hyper-parameters of the optimal model. The impact of image resampling was assessed by 
either up-sampling the PET or down-sampling the CT prior the texture feature extraction. Algorithm hyper-
parameters were optimized using Bayesian optimization. Another comparison was performed to determine the 
effects of determining the testing and training sets based on the number of patients (90% of patients in training 
versus 10% testing) or the number of lesions independently of patient (90% of lesions in training versus 10% 
testing).

Statistics
Agreement between physicians was assessed using Fleiss’ κ and Cohen’s weighted κ. Fleiss’ κ was used to 
compare the agreement of Physicians 2–4, who had worked together to form a consensus, and Cohen’s weighted 
κ was used to compare the consensus of those three physicians to Physician 1.

The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of each clas-
sifier were determined at the classification score threshold that results in the highest summed sensitivity and 
specificity. A modified McNemar test (Hawass 1997) was used to compare the classification results of the dif-
ferent algorithms and determine if any algorithms had significantly better classification results than the others. 
Using the classification score of each algorithm, ROC AUC was assessed for each classifier. ROC curves were 
then tested using DeLong’s test (DeLong et al 1988), which determines if statistically significant differences exist 
between ROC curves. Confidence intervals of AUC, sensitivity, and specificity were obtained based on the differ-
ent folds of the cross-validation, and standard error was used to determine confidence intervals of PPV and NPV.

Machine learning models were implemented in MATLAB 2017a using the machine learning toolbox and 
statistical comparisons of model outputs was performed in R.

Results

In the whole population of 37 patients, 1751 lesions were identified by physician. This dataset was used to train, 
test and compare various ML algorithms. Additionally, the subgroup of 14 patients, containing 598 lesions, were 
analyzed by additional three physicians to assess variability of physician classification of lesions. The physicians 
took in general over an hour to analyze each patient. The agreement between physicians is shown in table 4. 
Absolute agreement between physicians for all five classes was only 62%. Fleiss’ κ between Physician 2–4 was 
only moderate (0.56). Agreement was higher for lesions that the physicians were more certain of (Class 1 and 5). 

Table 2.  List of all imaging features used. In the case of location, there is a single feature and below lists the possible categories.

Image feature basis Features

Location Skull/mandible, ribs, cervical spine, thoracic spine, lumbar spine, sacrum, shoulders, sternum, 

humeri, radii/ulnae, hands, pelvis, femora, fibulae/tibiae, feet, patellae

Histogram Max, mean, integral, standard deviation, skewness, kurtosis, energy, entropy, pet volume

Co-occurrence matrix Angular moment, contrast-GLCM, correlation, sum of squares variance, inverse difference mo-

ment, sum average, sum variance, sum entropy, entropy-GLCM, difference variance, difference 

entropy, information measure of correlation 1, information measure of correlation 2, maximum 

probability, diagonal moment, dissimilarity, difference energy, inertia, inverse difference moment, 

sum energy, cluster shade, cluster prominance

Gray level run length Small run emphasis, long run emphasis, gray-level nonuniformity, run length nonuniformity, run 

percentage, low gray-level emphasis, high gray-level emphasis, short run low gray-level emphasis, 

short run high gray-level emphasis, long run low gray-level emphasis, long run high gray-level 

emphasis

Neighboring gray level Small number emphasis, large number emphasis, number nonuniformity, second moment, 

entropy-NGL

Neighborhood grey tone  

difference matrix

Coarseness, contrast-NGL, busyness

Disease distribution (occurrence 

or classification)

Maximum, minimum, mean, standard deviation

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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According to Cohen’s weighted κ, there was significant agreement between the Physician 1 and the consensus 
of Physician 2–4. 2% (12/598) of lesions were classified as definite metastasis by one physician and as definite 

benign by another physician.
The number of ROIs identified by the physicians and by the automated lesion detection methods for all of the 

patients are shown in table 5. The spatial disease distributions created from the whole population are shown in 
figure 1. Table 6 shows the numbers of features used for each model after removing redundant features if feature 
selection was performed on the whole population. Table 7 lists the features selected for the SORT model, and the 
features for the models using the other detection methods can be found in supplementary data (stacks.iop.org/
PMB/63/225019/mmedia).

Table 8 contains AUC, sensitivity, and specificity for all of the models. The ROC curves showing performance 
of the different machine learning algorithms when using statically optimized regional thresholding (SORT) for 
lesion detection are shown in figure 2. RF had the highest overall performance with AUC  =  0.95 95%CI [0.93–
0.96], sensitivity  =  0.88 [0.86–0.90], specificity  =  0.89 [0.87–0.90], PPV  =  0.83 [0.82–0.84], and NPV  =  0.92 
[0.92–0.93]. This superior performance was statistically significant (p  <  0.001 for both DeLong’s test and 
McNemar test) when compared to all algorithms with the exception of Adaboost DT, GLM, and neural networks.

Figure 3 shows a comparison of the classification performance when using RF with three different lesion 
detection methods. SORT resulted in significantly superior lesion classification (P  <  0.001) as compared with 
the global fixed thresholds. Classification using either of the global thresholds was comparable (P  =  0.69). 
Table 5 shows the number of ROIs removed by the models for each identification method.

The best model performance was found when only using the classes with the highest physician certainty (class 
1 versus 5, P  =  0.04) and when grouping background ROIs with benign lesions (classes 0–1 versus 5, P  <  0.0001). 
The highest performance also comes from models that use all the aforementioned features, followed by models 
that only exclude spatial distribution features (P  =  0.7) or texture features (P  =  0.018). Using the native imag-
ing resolution when extracting texture resulted in similarly performing models as to upsampling the PET or 
downsampling the CT (P  >  0.5). Bayesian optimization of RF hyperparameters (using the dataset segmented 
with SORT) identified the optimal configuration to include 1719 trees, a minimum leaf size of 1, and 17 features 
sampled at each node, this model did not perform better than models with suboptimal configurations (P  >  0.5). 
Dividing up training and testing based on number of patients instead of number of lesions did not impact model 
performance. Figure 4 shows the ROC curve with confidence intervals for the highest performing model.

Figure 5 shows classification performance of the RF model when each physician is independently used 
for training and testing. Models trained and testing using each physician’s labels had high classification per-
formance. In particular, models trained and tested on Physicians 2–4 had very similar algorithm performance 
(P  >  0.7). The model predicting the labels from Physician 1 had higher sensitivity for benign diseases, but had a 
lower specificity; however, this was not a significant difference (P  =  0.4). Additionally, the use of one physician 
for the training set and predicting a different physician’s labels resulted in high AUCs, ranging from 0.90–0.94.

Discussion

The primary challenge for developing automated NaF PET lesion classification is subjective nature of the 
classification, different physicians may not classify lesions the same way. This is noticeable in our analysis, where 

Table 3.  Hyperparameter settings for machine learning algorithms.

Algorithm Hyperparameters

RF Prior: empirical, trees: 1000, maximal number of decision splits (Leaf size): 1, features sampled per 

node: 9

Adaboost DT Prior: empirical, learning cycles: 1000, maximal number of decision splits: 1, minimum number of 

leaf node observations: 1, split criterion: Gini’s diversity index

GLM Distribution: normal

Neural network Hidden layers  =  10, training function: scaled conjugate gradient backpropagation, performance 

function: Cross entropy

KNN Prior: empirical, neighbors: 5, distance: standardized euclidean distance, distance weighting func-

tion: equal, number of nearest neighbors: 5

LDA Prior: empirical, discriminant type: pseudoquadratic 

Decision tree Prior: empirical, maximal number of decision splits: 1, minimum number of leaf node observa-

tions:1, split criterion: Gini’s diversity index

SVM Prior: empirical

Naive Bayes Prior: empirical, data distribution: multivariate multinomial distribution, kernel: normal

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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there was only moderate agreement between physicians. While in our work lesion detection was performed by 
a single physician, different physicians would have different sensitivities or specificities for lesion detection, and 
this would further reduce the agreement between physicians. The large numbers of lesions and moderate inter-
observer variability in lesion classification demonstrates the need for automation in lesion classification in NaF 
PET/CT imaging. Ideally, biopsies or extended follow-up would be used to corroborate the physician findings, 
but performing biopsies on such a large number of lesions is impractical. Extended follow-up was not available 
for these subjects, and using extended follow-up as ground truth has its own limitations. Thus, we chose to use 
the combined experience of four nuclear medicine physicians as our reference.

We tested nine different machine learning algorithms for lesion classification. RF were found to more accu-
rately replicate physician classifications of benign and malignant lesions (AUC  =  0.95) than other machine 
learning algorithms. RF had significant improvement over most models except for Adaboost DT, GLM and neu-
ral networks. This implies that there is a complex relationship between benign and malignant lesions, in which 
there is no feature hyperplane that can be used to cleanly separate benign lesions from malignant lesions. An 
alternative approach would be to use deep learning through convolutional neural networks. This would reduce 
the need for assessment of different features and further investigation into the use of deep learning for benign 
disease classification is merited.

It should be noted that hyperparameters were not investigated for all machine learning models. With default 
parameters RF outperformed the other models; however, while RF hyperparameters did not improve testing 
performance of the algorithm it is possible that hyperparameters of the other models could significantly improve 
the performance of those algorithms. Further investigation might be unnecessary, as it has been shown that RF 
models often outperform other machine learning algorithms in various tasks (Fernandez-Delgado et al 2014).

As can be noted by our training results, RF almost perfectly fit the training data in each fold of cross-validation, 
which would lead to a concern of overfitting. However, the models maintained high classification performance 
on the testing data. This is a strength of RF, which have been shown to avoid decreased testing performance, even 
when perfect training is achieved (Svetnik et al 2003). We also assessed the impact of other hyperparameters as 
well as the number of features necessary. Each of these factors indicate that overfitting was not a concern.

Of the automatic lesion detection methods, the statically optimized regional thresholding (SORT) method 
resulted in a superior classification model than using the global thresholds. This is likely due to SORT’s improved 
sensitivity and specificity for detecting disease compared to the global thresholds; it detected more disease than 
either global threshold while outputting fewer background ROIs than SUV  >  10 g ml−1 thresholds.

We focused on binary groupings for classification due to the limited numbers of equivocal, likely benign, or 
likely metastatic lesions (i.e. classes 2–4). Grouping background ROIs with definite benign lesions and perform-
ing binary classification of these against definite metastases (classes 0–1 versus 5) resulted in the best algorithm 
performance. However, the algorithm still had good performance in differentiating lesions of which physicians 
(class 0–2 versus 4–5) were less certain (AUC  =  0.92). Likely the reduced model performance on the uncertain 

Table 4.  Assessment of the agreement of lesion classification between the different physicians.

Assessment metric Value [95% CI]

Percent agreement between all 4 62%

Fleiss overall κ between cooperating physicians 0.56 [0.54–0.56]

Fleiss κ for definite metastases 0.74

Fleiss κ for likely metastases 0.26

Fleiss κ for equivocal lesions 0.21

Fleiss κ for likely benign lesions 0.41

Fleiss κ for definite benign lesions 0.59

Cohen’s weighted κ between independent physicians 0.76 [0.69–0.83]

Table 5.  Number of ROIs coming from the different lesion identification method. Additionally for each method the numbers of lesions 
removed by the classification are shown. Classification performed by physician was manual removal of class 1 lesions. Classification for the 
other identified lesions was performed using random forest (RF) models.

Number of ROIs Total Definite metastases Definite benign Background ROI

Classificaition status Before After Before After Before After Before After

Number of lesions identified by physician 1751 1432 925 925 319 0 — —
Number of ROIs identified by SORT thresholds 2989 1358 938 818 381 65 1031 76

Number of ROIs identified by SUV  >  10 g ml−1 3508 1278 1061 802 308 93 1536 108

Number of ROIs identified by SUV  >  15 g ml−1 1278 748 791 625 131 24 29 4

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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Figure 1.  Spatial probability distributions of disease occurrence across the patient population projected onto skeleton renderings. 
Each voxel represents the percent of patients that had that disease throughout the population.

Table 6.  Number of features from each type of feature that could be included in the models after features selection, the location feature was 
included in all models unless otherwise stated.

Detection method Location PET histogram CT histogram PET texture CT texture Distribution

Total number 

of features

SORT 1 4 4 10 14 39 73

SUV  >  10 g ml−1 1 3 5 14 13 39 75

SUV  >  15 g ml−1 1 4 5 12 14 42 78

Table 7.  List of all features selected by for the SORT model.

Image feature basis Features

Location Location

PET histogram Standard deviation(PET), skewness(PET), kurtosis(PET), energy(PET)

CT histrogram Max(CT), mean(CT), integral(CT), standard deviation(CT), kurtosis(CT)

PET texture Sum mean(PET), sum variance(PET), maximum probability(PET), dissimilarity(PET), sum 

energy(PET), run percentage(PET), short run low gray-level emphasis(PET), Coarseness(PET), contrast-

NGL(PET), busyness(PET)

CT texture Correlation(CT), inverse difference moment(CT), sum mean(CT), sum variance(CT), informa-

tion measure of correlation 1(CT), dissimilarity(CT), sum energy(CT), cluster shade(CT), small run 

emphasis(CT), number nonuniformity(CT), second moment(CT), coarseness(CT), contrast-NGL(CT), 

busyness(CT)

Disease distribution Maximum(background occurrence), minimum(background occurrence), mean(background occurrence), 

minimum(definite metastases occurrence), mean(definite metastases classification), minimum(likely 

metastases occurrence), mean(likely metastases occurrence), standard deviation(likely metastases occur-

rence), maximum(likely metastases classification), minimum(likely metastases classification), mean(likely 

metastases classification), minimum(equivocal occurrence), mean(equivocal occurrence), standard 

deviation(equivocal occurrence), minimum(equivocal classification), mean(equivocal classification), 

standard deviation(equivocal classification), maximum(likely benign occurrence), minimum(likely benign 

occurrence), mean(likely benign occurrence), minimum(likely benign classification), mean(likely benign 

classification), standard deviation(likely benign classification), mean(definite benign occurrence), standard 

deviation(definite benign occurrence), maximum(definite benign classification), minimum(definite 

benign classification), mean(likely/definite metastases occurrence), standard deviation(likely/definite me-

tastases occurrence), minimum(likely/definite metastases classification), standard deviation(likely/definite 

metastases classification), minimum(likely/definite benign occurrence), maximum(background/likely/def-

inite benign occurrence), minimum(background/likely/definite benign occurrence), mean(background/

likely/definite benign occurrence), standard deviation(background/likely/definite benign occurrence), 

minimum(background/likely/definite benign classification), mean(background/likely/definite benign clas-

sification), standard deviation(background/likely/definite benign classification)

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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Table 8.  Summary of model performances on the training and testing sets under different conditions, with 95% CI. In the top 
section machine learning models were compared and in the remaining sections, the RF model was altered by one parameter.

Training set Testing set

Comparison Model AUC Sensitivity Specificity AUC Sensitivity Specificity

RF 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

Adaboost 
DT

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.95] 0.85 [0.83–0.86] 0.88 [0.85–0.91]

GLM 0.95 [0.95–0.95] 0.87 [0.87–0.87] 0.90 [0.90–0.90] 0.94 [0.92–0.95] 0.87 [0.86–0.89] 0.87 [0.85–0.90]

Machine Neural 
network

0.94 [0.93–0.94] 0.87 [0.86–0.88] 0.87 [0.87–0.88] 0.93 [0.91–0.94] 0.89 [0.87–0.91] 0.84 [0.81–0.87]

Learning KNN 0.96 [0.96–0.96] 0.93 [0.93–0.93] 0.84 [0.84–0.85] 0.90 [0.89–0.92] 0.88 [0.86–0.90] 0.80 [0.77–0.83]

Algorithm LDA 0.91 [0.91–0.91] 0.87 [0.84–0.89] 0.82 [0.80–0.84] 0.87 [0.85–0.90] 0.87 [0.84–0.90] 0.77 [0.73–0.80]

Decision 
tree

1.00 [1.00–1.00] 0.98 [0.97–0.98] 0.97 [0.97–0.98] 0.86 [0.84–0.87] 0.82 [0.81–0.84] 0.85 [0.82–0.87]

SVM 0.82 [0.81–0.82] 0.73 [0.71–0.75] 0.79 [0.76–0.82] 0.82 [0.80–0.84] 0.69 [0.65–0.74] 0.83 [0.80–0.85]

Naive bayes 0.97 [0.97–0.97] 0.89 [0.88–0.90] 0.89 [0.88–0.90] 0.77 [0.74–0.80] 0.80 [0.78–0.82] 0.67 [0.62–0.71]

Lesion SORT 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

Detection SUV  >  10 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.89 [0.87–0.90] 0.93 [0.92–0.94] 0.71 [0.68–0.74]

Method SUV  >  15 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.88 [0.87–0.90] 0.76 [0.69–0.82] 0.87 [0.85–0.89]

0–2 versus 
4–5

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.92 [0.91–0.93] 0.83 [0.82–0.85] 0.86 [0.84–0.89]

0–3 versus 
4–5

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.92 [0.91–0.92] 0.84 [0.83–0.86] 0.83 [0.81–0.84]

Physician 1–2 versus 
4–5

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.89 [0.88–0.90] 0.85 [0.83–0.87] 0.76 [0.73–0.79]

Certainty 1–3 versus 
4–5

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.88 [0.87–0.89] 0.84 [0.83–0.85] 0.76 [0.74–0.78]

0–1 versus 
5

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

1 versus 5 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.93 [0.92–0.94] 0.84 [0.83–0.86] 0.85 [0.84–0.86]

CT 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.71 [0.70–0.73] 0.71 [0.69–0.73] 0.64 [0.61–0.66]

PET 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.89 [0.88–0.90] 0.87 [0.85–0.89] 0.80 [0.77–0.82]

Spatial dis-
tribution

0.99 [0.99–0.99] 0.95 [0.95–0.95] 0.93 [0.93–0.94] 0.85 [0.84–0.86] 0.68 [0.67–0.70] 0.86 [0.84–0.87]

Features PET/CT 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.90 [0.89–0.91] 0.89 [0.87–0.90] 0.76 [0.73–0.79]

Included Simple 
featuresa

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.93 [0.92–0.94] 0.92 [0.90–0.94] 0.76 [0.74–0.78]

No texture 
features

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.93 [0.92–0.94] 0.89 [0.88–0.90] 0.82 [0.81–0.84]

PET/CT 
and loca-
tion

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.95] 0.87 [0.85–0.88] 0.87 [0.85–0.90]

All 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

T  =  1729, 
LS  =  1, 
F  =  17b

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.96] 0.87 [0.85–0.89] 0.88 [0.85–0.90]

RF T  =  1000, 
LS  =  1, 
F  =  9

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

Hyperparameters T  =  115, 
LS  =  2, 
F  =  2c

1.00 [1.00–1.00] 0.98 [0.98–0.99] 0.99 [0.99–0.99] 0.94 [0.93–0.95] 0.88 [0.87–0.90] 0.86 [0.84–0.88]

T  =  408, 
LS  =  11, 
F  =  61

0.99 [0.99–0.99] 0.94 [0.94–0.94] 0.94 [0.94–0.95] 0.94 [0.94–0.95] 0.87 [0.85–0.89] 0.88 [0.86–0.90]

T  =  1000, 
LS  =  1, 
F  =  All

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.95] 0.92 [0.91–0.93] 0.83 [0.80–0.85]

Cross-validation Equal 
patients per 
fold

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.95] 0.86 [0.82–0.90] 0.87 [0.85–0.89]

Method
Equal 
lesions per 
fold

1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.95 [0.93–0.96] 0.88 [0.86–0.90] 0.89 [0.87–0.90]

1 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.93 [0.91–0.95] 0.93 [0.91–0.94] 0.78 [0.73–0.82]

(Continued)
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Figure 2.  ROC curves of the different machine learning algorithms with lesions identified using statically optimized regional 
thresholding (SORT). The RF model had the highest AUC.

Physician 2 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.92–0.95] 0.81 [0.79–0.83] 0.94 [0.91–0.97]

Ground 3 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.93 [0.92–0.95] 0.80 [0.77–0.83] 0.94 [0.92–0.96]

Truth 4 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.92–0.95] 0.79 [0.76–0.81] 0.96 [0.95–0.97]

Consensus 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 0.94 [0.93–0.95] 0.83 [0.81–0.85] 0.91 [0.88–0.93]

a Simple features are the global level features from PET or CT and the location feature.
b Optimal model identified by Bayesian optimization,T represents number of trees, LS represents minumum leaf size and F represents 

the number of features sampled per node.
c Worst model identified by Bayesian optimization.

Table 8.  (Continued)

Training set Testing set

Comparison Model AUC Sensitivity Specificity AUC Sensitivity Specificity

Figure 3.  Performance statistics of random forest (RF) models trained using the different lesion identification and segmentation 
methods. Data resulting from using SORT thresholds resulted in a superior classification model (P  <  0.05) than data resulting from 
the other thresholding methods.
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lesions is a result of physician inconsistency. An additional benefit of grouping background ROIs with metastases 
is the reduction of the false positive rate of the automated lesion detection methods.

Using only PET features or using only CT features resulted in worse classification performance than when 
using both sets of features. The highest performance was found using all of PET, CT, spatial distribution, and tex-
ture features. Interestingly, this fully inclusive model was not statistically superior to the model that included all 
features except the spatial distribution features. This suggests that the spatial distribution features may not be nec-

Figure 4.  ROC curve of the random forest (RF) trained using SORT to identify lesions, on class 0–1 versus 5, including all features, 
and using the hyperparameters: 1719 trees, a minimum leaf size of 1 and 17 features sampled at each node. Confidence bounds come 
from ten-fold cross-validation.

Figure 5.  Performance characteristics of random forest models trained using different physician labels for training and testing of 
the model. The consensus category represents the consensus of Physicians 2–4. All models had AUC  >  0.93.

Phys. Med. Biol. 63 (2018) 225019 (12pp)
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essary to achieve a top performing classification model and that in cases where the model speed would be optim
ized these more complicated features could be excluded. Texture features appear to be another set of features that 
provided minimal gain to the model, even though excluding texture resulted in a significant decrease in perfor-
mance. Additionally, as the impact of voxel size for extraction of image texture was minimal on the classification 
performance of RF (P  >  0.5), the CT can be downsampled to reduce computation time of extracting texture.

An interesting trend was found when we performed cross-validation to select equal numbers of patients in 
each training and testing dataset rather than equal numbers of lesions. We found that the underlying patient level 
correlation of lesions from the same patient did not provide a significant improvement in model performance. 
This likely implies that the RF model did not use any patient specific information in the classification.

With the different physician classifications available to us, we were able to assess if the model performance is 
dependent on the physician that performed the classification. Our model had high performance on predicting 
how each physician classified lesions. This implies that the model is able to replicate tendencies in each physi-
cian’s classification performance.

This study had several limitations. As discussed, the primary limitation is the lack of ground truth classi-
fication labels. However, as we were able to create models that could replicate the scoring tendencies of each 
physician, if a ground truth became available in the future, we expect the model could be trained to learn those 
classifications as well. Another limitation is the use of a simple lesion segmentation method. With a method that 
accurately determines lesion boundaries, the splitting of lesions that were merged together during lesion detec-
tion would not need to be performed and the quantification of each ROI would be more accurate. We hypoth-
esize that this would result in superior classification performance of machine learning models. However, even the 
current level of performance of our algorithm exceeds any available alternative.

Conclusion

We have developed the first automated lesion classification tool for NaF PET/CT images. This tool, when 
combined with the automated lesion detection tool, SORT, can allow physicians to quickly and accurately classify 
and analyze lesions in NaF PET/CT images. We found that RF outperformed other classification algorithms when 
classifying lesions in NaF PET/CT images. When the model was trained and tested using classification labels from 
four different physicians, it maintained high classification performance for predicting each physician’s labels.
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